REVIEW 3729

Development 136, 3729-3740 (2009) doi:10.1242/dev.030320

Informatics approaches to understanding TGF3 pathway

regulation

Pascal Kahlem' and Stuart J. Newfeld?3-*

In recent years, informatics studies have predicted several new
ways in which the transforming growth factor  (TGFp)
signaling pathway can be post-translationally regulated.
Subsequently, many of these predictions were experimentally
validated. These approaches include phylogenetic predictions
for the phosphorylation, sumoylation and ubiquitylation of
pathway components, as well as kinetic models of endocytosis,
phosphorylation and nucleo-cytoplasmic shuttling. We review
these studies and provide a brief ‘how to’ guide for
phylogenetics. Our hope is to stimulate experimental tests of
informatics-based predictions for TGFf signaling, as well as for
other signaling pathways, and to expand the number of
developmental pathways that are being analyzed
computationally.

Introduction

Intercellular signaling is essential for proper pattern formation
during development in all multicellular organisms. In metazoan
animals, a surprisingly small set of highly conserved developmental
signaling proteins, which are encoded as multigene families, such as
the transforming growth factor B (TGFP) family, perform a
multitude of tasks. To illustrate the versatility of these signaling
molecules, we note just a few of the documented roles that TGF3
family members play in mammals: they maintain the pluripotency
of embryonic stem cells, regulate mesenchymal differentiation,
coordinate skeletal patterning, mediate epithelial development,
synchronize the differentiation of endothelial cells, modulate
myeloid cell maturation, influence lineage commitment in neurons
and specify male versus female sexual differentiation (reviewed by
Derynck and Miyazono, 2008a).

In order to perform these myriad roles, the M. musculus genome
encodes 33 TGFJ} family members (Derynck and Miyazono, 2008b).
By comparison, the D. melanogaster genome encodes seven
(Pyrowolakis et al., 2008) and the C. elegans genome encodes five
(Savage-Dunn, 2005). Structurally, all family members share several
features. Each contains an N-terminal signal sequence that is
removed prior to secretion and a large pro-protein region that is also
cleaved prior to secretion but that contributes to the dimerization of
the C-terminal biologically active ligand. The ligand domain of all
family members (~110 amino acids in length) contains a
stereotypical pattern of six cysteines. Most family members have
seven cysteines, with the additional residue being centrally located
and involved in ligand dimerization via a disulfide bond. A subset of
family members has nine cysteines: the common set of seven and
two additional residues towards the N-terminus. In addition, strong
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amino acid similarity exists in the regions between the cysteines of
the ligand and, to a lesser extent, in the pro-protein region (reviewed
by Derynck and Miyazono, 2008b).

Generating meaningful amino acid alignments, quantifying the
level of amino acid similarity between two sequences and then
assessing the probability of recent common ancestry are traditional
informatics methods that contribute to our understanding of
developmental signaling. This approach, known as phylogenetics,
is designed to elucidate evolutionary relationships between family
members both within and between species. The value of these
studies to developmental biologists is that the tree of evolutionary
relationships generated by a phylogenetic analysis can be utilized
both as a roadmap upon which to interpret experiments conducted
by others, and as a hypothesis generator to suggest new functions for
poorly understood family members.

Given the universality of multigene families in developmental
signaling pathways and the growing application of informatics
approaches to understanding pathway regulation, we provide a
review of recent advances in TGFp signaling (also see Box 1 for
other reviews on TGF signaling published in this issue). First, we
briefly summarize TGFf signal transduction pathways and the
phylogenetics of the TGFP family. Short guides to phylogenetics
and its associated computer programs are included. Second, we
highlight new applications of phylogenetics that are designed to
improve our understanding of TGF[3 pathway regulation at the level
of the ligand and within the signal transduction pathway. Third, we
review the latest reports that describe the kinetic modeling of the
TGFp pathway. We begin with a description of the method and then
discuss both biochemical and cell biological models. Lastly, we
highlight emerging informatics methods that are currently being
applied to the TGFP pathway, such as Boolean modeling and
network reconstruction.

TGFp signal transduction pathways

Cells respond to instructions from developmental signaling
molecules once the information has been transmitted from the cell
surface via dedicated signal transduction pathways (Fig. 1). The
current model for canonical TGF signal transduction begins when
a TGFp ligand (e.g. TGFPB1) binds to a type II transmembrane
receptor serine-threonine kinase. Upon ligand binding, this receptor

Box 1. Minifocus on TGFp signaling

This article is part of a Minifocus on TGFf signaling. For further
reading, please see the accompanying articles in this collection: ‘The
extracellular regulation of bone morphogenetic protein signaling’ by
David Umulis, Michael O’Connor and Seth Blair (Umulis et al., 2009);
‘The regulation of TGFp signal transduction’ by Aristidis Moustakas
and Carl-Henrik Heldin (Moustakas and Heldin, 2009); and ‘TGFB
family signaling: novel insights in development and disease’, a review
of a recent FASEB Summer Conference on TGF signaling by Kristi
Wharton and Rik Derynck (Wharton and Derynck, 2009).
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Fig. 1. TGFp signal transduction. Events downstream of ligand-
receptor binding in a TGFB-responsive cell. When a TGFp ligand binds
to a type Il transmembrane receptor serine-threonine kinase, the
receptor recruits a type | receptor and phosphorylates it (P) within a
serine/threonine-rich region. Serine-threonine phosphorylation
stimulates the type | receptor to phosphorylate one or more C-terminal
serines in a receptor-associated Smad (R-Smad), such as Smad2 and
Smad3 (Smad2/3). At the membrane, Smad anchor for receptor
activation (Sara) acts as an adapter and facilitates the interaction
between R-Smads and their type | receptor. The phosphorylation of
Smad2/3 stimulates their translocation into the nucleus, where they
form a heteromeric complex with the common-mediator Smad (Co-
Smad), Smad4. This multi-Smad complex then regulates the expression
of TGFp target genes in cooperation with tissue-specific activators and
repressors. Solid arrows represent the movement of information and
protein subcellular localization (see key). Red T-bars represent the
activity of proteins that block information transfer, such as I-Smads
(Smad7) and members of the Ski/Sno family. The regulation of pathway
components by polyubiquitylation (Ub) is also shown.

(which contains a constitutively active kinase) recruits a type |
receptor and phosphorylates it within a serine/threonine-rich region.
Type I receptor phosphorylation, in turn, stimulates this receptor to
phosphorylate one or more C-terminal serines in the receptor-
associated Smads (R-Smads), Smad2 and Smad3. The
phosphorylation of Smad2/Smad3 shifts their subcellular
localization towards the nucleus, where they form a heteromeric
complex with the common-mediator Smad (Co-Smad), Smad4. This
multi-Smad complex then regulates the expression of TGF[ target
genes in cooperation with tissue-specific activators and repressors
(Massagué, 2008). Mechanisms of TGFP signal transduction are
discussed in more detail in the accompanying review (Moustakas
and Heldin, 2009).

In addition to Smad-dependent signal transduction pathways,
studies in mammalian cells have shown that TGF ligands can
stimulate TGFP receptors to activate Smad-independent signal
transduction pathways, such as mitogen-activated protein kinases
(MAPKSs) (Javelaud and Mauveil, 2005), the Rho-like GTPases
(Wilkes et al., 2003) and phosphatidylinositol-3-kinase (Bakin et al.,
2000). Which signal transduction pathway a TGFf receptor
activates is thought to be influenced by cell type-specific accessory
proteins, such as TGFB-activated kinase 1 (TAK1; MAP3K7 —
Mouse Genome Informatics) in glomerular mesangial cells (Kim et
al., 2009).

The ability of TGFP family members to elicit powerful
responses in target cells via a variety of pathways dictates that
their activity is strictly regulated to avoid unintended
consequences. Studies in many organisms have shown that
negative regulation of the TGFJ pathway can be accomplished by
a variety of mechanisms. In an accompanying review article,
mechanisms of extracellular antagonism are discussed (Umulis et
al., 2009) (see also Box 1). Here, we focus on intracellular
antagonism and note that two mechanisms have been widely
studied: antagonism by dedicated proteins and the elimination of
an essential component of the signaling pathway via
polyubiquitin-mediated degradation.

Dedicated intracellular antagonists from two families act at
distinct points in the pathway. Inhibitory Smads (I-Smads)
antagonize signaling near the top of the pathway by blocking
interactions between type I receptors and R-Smads and also by
preventing R-Smad—Co-Smad complex formation (Miyazono,
2008). Members of the Sno/Corl/Dac family of nuclear co-
repressors bind to promoter-bound Co-Smads and block their
ability to activate transcription. These proteins accomplish this by
recruiting transcriptional repressors, such as histone deacetylases
and Sin3A. Then, upon ligand stimulation, the Sno family
proteins are degraded, dissolving the repressor complex and
allowing Smad complexes to stimulate transcription (Pot and
Bonni, 2008). Alternatively, Sno proteins in M. musculus, D.
melanogaster and C. elegans have been shown to facilitate TGF
signaling. For example, in D. melanogaster, the dSno (Snoo —
FlyBase) mutant phenotype mimics the loss of Activin signaling,
and biochemical studies have revealed that dSno facilitates
Activin signaling by shifting the affinity of the Co-Smad Medea
away from Mad (the BMP-dedicated R-Smad) and towards
dSmad?2 (Smox — FlyBase) (Takaesu et al., 2006). Taken together,
these data suggest that the influence of Sno proteins on TGFf3
signaling is probably tissue specific.

Ubiquitylation is another frequently employed mechanism for
antagonizing TGFp signaling. The ubiquitin pathway results in
protein degradation and is stimulated when a polyubiquitin chain is
attached to a lysine in a target protein (Meinnel et al., 2006).
Numerous proteins act as ubiquitin E3 ligases (the enzyme that
forms the covalent bond between a ubiquitin molecule and
a target protein) for TGFB pathway components, including
Ectodermin/Tifly (Trim33) (Dupont et al., 2005) and Smurf (Morén
etal., 2005). Negative regulation of TGFP pathway components by
polyubiquitylation and their subsequent degradation has been
reported for H. sapiens type I receptors, such as ALKS (TGFR1 —
Human Gene Nomenclature Committee; also known as TBRI), and
for Smads, such as SMAD2 (Kuratomi et al., 2005). Interestingly, in
several instances, the I-Smad and polyubiquitylation mechanisms
are intertwined, as shown by the observation that I-Smads can
recruit the Smurf ubiquitin ligase to the TGF receptor complex
(Kavsak et al., 2000).
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By contrast, monoubiquitylation can have positive or negative
effects on TGFP signaling in a tissue-specific fashion. For example,
the monoubiquitylation of Lys507 in human SMAD4 (a Co-Smad)
can accentuate TGF[} signaling by enhancing its ability to form
complexes with R-Smads (Morén et al., 2003). Recently, the E3
ligase Ectodermin was shown to be a deactivating
monoubiquitinase, rather than a polyubiquitylating enzyme for
Smad4, and this was coupled with the discovery of the first TGFf3
pathway deubiquitinase: Dupont et al. demonstrated that reversible
monoubiquitylation by Ectodermin/Tifly and the deubiquitinase
FAM (Fat Facets in Mammals, also known as Usp9x) on Lys519 in
human SMAD4, can function as an ‘on-off” switch for TGFf
signaling in D. melanogaster, X. laevis and M. musculus (Dupont et
al., 2009).

Sumoylation, a distinct post-translational modification that targets
lysine residues, also plays positive and negative roles in the TGFf3
pathway. When mammalian SMAD4 is sumoylated at Lys113 or
Lys159, its ability to activate transcription is stimulated in
transfected HeLa cells (Lin et al., 2003). In this study, RNAi
knockdown of UBC9 (UBE2I) (an E2-conjugating enzyme that
participates in the addition of SUMO1 molecules to lysine residues
in a target protein) decreased SMAD4 protein levels, whereas
overexpression of the SUMOI protein increased SMAD4 protein
levels. A second study showed that sumoylation of the same lysine
residues represses the ability of SMAD4 to activate transcription in
transfected COS cells (Long et al., 2004). In this study,
overexpression of SUMO1 and UBC9 decreased TGFB-responsive
reporter gene expression, whereas overexpression of a SUMO1
protease increased expression from the reporter. Taken together,
these studies suggest that the influence of sumoylation on SMAD4
activity is cell-type specific.

To date, numerous questions remain about the role of lysine
modification as a mechanism for regulating the activity of the TGF3
pathway. Recently, this topic has been addressed through the use of
phylogenetics (Konikoff et al., 2008). Before reviewing this and
other phylogenetic studies of TGFP pathway regulation, we reprise
the traditional role of phylogenetics and provide the first description
of the evolutionary relationship between TGF} family members
based on full-length protein sequences.

Phylogenetics of TGFp family members

It is well known that phylogenetic trees are useful for assessing the
probability of recent common ancestry between members of a
multigene family (reviewed by Whelan, 2008) and that a tree is
generated from DNA or protein sequences by computers running
unfathomable mathematical equations (reviewed by Giribet, 2007).
In Box 2, we provide a practical guide to generating an informative
tree. We briefly describe each step (identifying related sequences,
creating an alignment, generating a tree and incorporating statistics)
and suggest relevant, user-friendly computer programs. In Box 3, for
those with an interest in the underlying theory, we provide additional
details on four common algorithms for generating trees from
alignments and additional computer programs.

To achieve maximum confidence in phylogenetic analyses, many
studies utilize species that belong to distinct phyla. For example, our
tree of 45 TGF[ family proteins (33 from M. musculus; seven from
D. melanogaster; five from C. elegans) (Fig. 2) focuses on three
fully sequenced genetic model organisms. Two of these species are
coelomates, animals with three embryonic germ layers and a
digestive tract with two openings: mouse (M. musculus is a
deuterostome, in which the blastopore becomes the anus) and fruit
fly (D. melanogaster is a protostome, in which the blastopore

Box 2. Practical guide to phylogenetics

Here we provide a practical guide to generating an informative tree.
We describe how to identify related sequences, how to create an
alignment of the sequences, how to generate a tree from the
alignment and how to incorporate statistics.

BLAST is a program available at the NCBI website that
identifies related sequences (Johnson et al., 2008) (http:/blast.
ncbi.nim.nih.gov/Blast.cgi). For many phylogenetic analyses, the
most useful BLAST program is BLASTp, which utilizes protein
sequences. An important part of a BLAST report is the E-values. These
values are a measure of how frequently the alignment between your
query and the listed sequence would have occurred by chance. The
smaller the E-value (they are usually shown as negative exponents),
the less likely the match is due to chance.

Clustal is a program that generates multi-sequence alignments
(Larkin et al., 2007) (http:/Avww.clustal.org/). Clustal aligns sequences
using a mathematical approach that does not utilize external
biological knowledge, such as mutational mechanisms that cause
changes in amino acid sequences, transcription factor binding sites or
protein structure, as a guide, and therefore the investigator should
examine the alignment for deviations from biological ‘common
sense’. If you plan to publish an alignment, several programs such as
Boxshade (http://ch.embnet.org/software/BOX_form.html) add easily
interpretable black and gray highlights for identical and similar amino
acids.

MEGA is a program that generates trees from Clustal alignments
(Kumar et al., 2008) (http:/Awvww.megasoftware.net/). Within MEGA
there are several algorithms available for generating phylogenetic
trees, each based on different sets of assumptions (see Box 3 for
details on four popular algorithms). In addition to MEGA, there are
many programs available for phylogenetic analysis of protein
sequences, including PhyML (Guindon and Gascuel, 2003) and
Leaphy (Whelan, 2009). An extensive list of programs is available at
evolution.genetics.washington.edu/phylip/software.html. Regardless
of the method employed in tree construction, it is important to
determine how much statistical confidence is present at the node
that connects two branches.

Bootstraping (Felsenstein, 1985) is a common statistical technique
that can be implemented in MEGA to ascertain the probability that
the node connecting two branches or two clusters of branches is
significant. This method takes a random sample of the sequences in
the alignment and builds a tree from this sample. It does this many
times (typically >1000) and then calculates a bootstrap value for each
branch in the tree (the percentage of trees in which two branches or
clusters are grouped together). Bootstrap values are not strictly
equivalent to probabilities, but the higher the bootstrap value the
greater the likelihood that a branch has not occurred due to chance.
The bootstrap method is considered a conservative estimator and in
practice a bootstrap value above 70 is often interpreted as a
statistically supported branch (Efron et al., 1996; Sitnikova, 1996).

becomes the mouth). Deuterostomes and protostomes are
taxonomically equivalent groups of coelomate phyla. The third
species is a nematode (C. elegans is a pseudocoelomate, an animal
with three germ layers but a digestive tract with one opening).
Molecular data suggest that the split between deuterostomes and
protostomes occurred ~990 million years ago and that between
coelomates and pseudocoelomates ~1.2 billion years ago (Hedges
and Kumar, 2003).

Phylogenetic analyses of TGFB family members have
traditionally focused on the ligand domain owing to the easily
identifiable amino acid conservation in this region (e.g. Newfeld
et al, 1999). In these studies, two large subfamilies, the
Decapentaplegic/bone  morphogenetic  protein  (Dpp/BMP)
subfamily and the TGFp/Activin subfamily, were identified based
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Box 3. Four popular algorithms for generating trees
from alignments

The Neighbor-Joining method (Saitou and Nei, 1987) is a ‘numerical-
based’ technique. It first determines the number of amino acid
differences between each pair of sequences in an alignment. Then it
normalizes this number over the length of each protein to calculate
a scalar value known as the ‘evolutionary distance’ between each
pair of sequences. A tree is built by joining the two sequences that
have the smallest distance between them. Then, the program
sequentially adds the next closest sequence or group of similar
sequences until all sequences are incorporated. This method is
available in MEGA.

The Maximum Parsimony method is a ‘character-based’ technique.
It attempts to implement the age-old scientific principle of Occams’
Razor (i.e. the best explanation is the simplest one) (Fitch and Farris,
1974). The method is designed to identify the tree that requires the
smallest number of evolutionary steps to explain all the observed
changes (an amino acid is considered a discrete character) in the
alignment. To do this, the program creates all possible trees and then
searches for the minimal tree. A drawback is that the number of trees
to be analyzed becomes computationally prohibitive even for an
alignment of modest size. Computationally tractable variations, such
as Branch and Bound (Penny and Hendy, 1987), have been
developed to address this issue. The Branch and Bound algorithm is
available in MEGA.

The Maximum Likelihood method is a ‘probability-based’
technique (Felsenstein, 1981). It calculates the likelihood that a
randomly generated phylogeny, when evaluated against a specific
evolutionary model, will generate the sequence changes seen in an
alignment. The evolutionary models employed are matrices of
empirically derived amino acid substitution frequencies expressed as
mathematical equations. Two frequently employed matrices are
those of Dayhoff et al. (Dayhoff et al., 1978) (PAM 30) and Henikoff
and Henikoff (Henikoff and Henikoff, 1992) (BLOSUM). The ‘most
likely” phylogeny is the one with the highest probability of generating
the observed sequence changes. The Maximum Likelihood algorithm
is widely available and can be implemented in PhyML, PAUP*
(Swofford, 2001), Leaphy and MEGA. Bootstrapping is an
appropriate approach for assessing the degree of confidence in each
node, but the Maximum Likelihood approach allows alternative
statistical tests for evaluating trees (e.g. the Shimodaira-Hasegawa
test and Approximately Unbiased test). These alternative tests are
available via the CONSEL software program (Shimodaira and
Hasegawa, 2001) (http://www.is.titech.ac.jp/~shimo/prog/consel/).

The Bayesian Inference method is also a ‘probability-based’
technique. It employs Markov chain Monte Carlo simulation (Mau et
al.,, 1999) to estimate the ‘'most likely’ tree directly from the data
relatively rapidly, rather than identifying it from randomly generated
trees as in the Maximum Likelihood approach (but based on the
same set of substitution frequency matrices). This technique is a
recent innovation in phylogenetic inference and it is available
in the program MrBayes (Ronquist and Huelsenbeck, 2003)
(http://mrbayes.csit.fsu.edu).

on amino acid similarities. Each subfamily has members in M.
musculus, D. melanogaster and C. elegans. In the ligand tree, within
these two major subfamilies the level of amino acid conservation
between family members from different species (homologs —
sequences that are ‘identical by descent’ from a common ancestor)
is extremely high. For example, an alignment of D. melanogaster
Dpp with its closest relatives (M. musculus BMP2 and BMP4)
reveals that these proteins share 75% amino acid identity (Newfeld
and Gelbart, 1995). This level of sequence conservation is reflected
in the ability of these ligands to function correctly in cross-species
experiments. Both human BMP2 and BMP4 rescue dpp mutant

phenotypes when expressed in flies (Padgett et al., 1993), and
recombinant Dpp induces bone formation in mammalian cell culture
(Sampath et al., 1993). These subfamilies and four smaller
subfamilies are also present in a phylogeny that we generated from
full-length TGF proteins (Fig. 2; see Table S1 in the supplementary
material).

The experimental demonstration of cross-species functionality for
family members that cluster together, such as Dpp and BMP2/4,
suggests that clustering can provide clues as to the function of less
well-studied proteins. For example, all of the most closely related
sequences to D. melanogaster Dpp are present in a supercluster that
contains the M. musculus sequences BMP2, BMP4, BMP9 (GDF2
— Mouse Genome Informatics) and BMP10, as well as growth and
differentiation factor 5 (GDF5), GDF6 and GDF7 (Fig. 2). A sister
supercluster within the BMP subfamily contains the D.
melanogaster proteins Glass bottom boat (Gbb) and Screw (Scw),
the five M. musculus proteins BMP5/6/7/8a/8b and two C. elegans
proteins. The fact that heterodimers composed of Dpp and Gbb
(Shimmi et al., 2005a) or Dpp and Scw (Shimmii et al., 2005b) elicit
responses distinct from those of their respective homodimers during
Drosophila development suggests that each of the seven M.
musculus proteins in the Dpp supercluster can potentially dimerize
with each of the five M. musculus family members in the Gbb/Scw
supercluster (Fig. 2). To date, four of the possible M. musculus
intercluster heterodimers have been shown to function in a manner
distinct from that of their respective homodimers in cell culture (e.g.
Israel et al., 1996). Our tree suggests that these and additional
intercluster heterodimers play roles in M. musculus development.

In summary, traditional phylogenetic analyses can still shed new
light on the evolutionary relationships between TGF[ family
members. Recently, as discussed below, several papers have taken a
phylogenetics approach to TGFf signaling, but with a different
purpose.

Phylogenetics of TGFp pathway regulation

These new applications of phylogenetics are designed to improve
our understanding of TGFP pathway regulation rather than of
evolution. The underlying logic of this new approach is the
exploitation of evolutionary conservation as a guide to identifying
amino acids that are involved in the enzymatic regulation of protein
function. Recent reports of new regulatory mechanisms that impact
TGFp ligands, type I receptors and Smads are reviewed.

Ligand cleavage

In order to be effectively bound by their receptors, the pro-region of
TGEFP proteins must be cleaved from the receptor-binding ligand
domain (Fig. 3). Ligand cleavage is performed by a Furin-type
enzyme at a multi-basic amino acid sequence (arginine-X-X-
arginine) (Dabovic and Rifkin 2008) prior to secretion of the ligand.
Kuunapuu et al. examined the biochemical mechanisms that are
employed in the cleavage process for members of the
Dpp/BMP2/BMP4 subfamily (Kuunapuu et al., 2009). They began
with a phylogenetic analysis of a 60 amino acid region surrounding
the cleavage site in 27 species, ranging from the diploblast N.
vectensis (an animal even less complex than C. elegans as it has only
two germ layers) to H. sapiens — a 1.5 billion year time span
(Hayward et al., 2002).

They found that pro-domain cleavage from the ligand is not
accomplished at a single site, but that one to three sites are involved.
They also discovered that the number of cleavage sites, their amino
acid sequence and their location (the number of amino acids from
the first cysteine of the ligand domain) are highly variable across
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species. This hypervariability contrasts with the astounding
conservation of the immediately adjacent ligand domain (~80%
amino acid similarity across this 1.5 billion year time span). Further,
they found that within deuterostomes (the phylum that includes
vertebrates), groups of sequences with similar cleavage site
organization do not match the established relationships of their
respective species. This phenomenon is not uncommon in the field
of' molecular evolution, in which it is known as ‘incongruity between
the gene tree and the species tree’. The authors found that vertebrates
and echinoderms (echinoderms are a sister phylum to hemichordates

Fig. 2. TGFP family tree. The longest isoform of each TGF family
member from C. elegans (Ce, five) (Savage-Dunn, 2005), D.
melanogaster (Dm, seven) (Pyrowolakis et al., 2008) and M. musculus
(Mm, 33) (Derynck and Miyazono, 2008b) were aligned in Clustal X. A
tree was generated from the alignment by the Neighbor-Joining
algorithm with 1000 bootstrap replicates in MEGA as described
(Newfeld et al., 1999) (see also Box 3). The length of the alignment was
984 amino acids. This alignment is 871 amino acids longer than the
traditional ‘ligand-only” alignment of 113 amino acids. Mouse GDNF
(out-group) provides a root because it shares only the pattern of
cysteines with other TGFB members and uses a novel receptor (Jing et
al., 1996). Bootstrap values for each node that joins two or more
sequences are shown. Because 88% of the alignment is composed of
divergent pro-protein sequences, we consider a bootstrap value (Box 2)
of greater than 40 to be biologically meaningful. Branch lengths are
drawn to scale, and the scale bar shows the number of amino acid
substitutions per site between two connected sequences. Subfamilies
with varying levels of statistical support are indicated: bone
morphogenetic protein (BMP, red), UNC-129 (purple), Nodal
(turquoise), TGFB/Activin (green), Inhibin (blue) and Mullerian-inhibiting
substance (MIS, brown; AMH — Mouse Genome Informatics). For the
name, synonym and protein ID of each sequence, see Table S1 in the
supplementary material.

and only distantly related to vertebrates) share the same cleavage site
organization, whereas cephalochordates and urochordates (both
sister phyla to vertebrates and only distantly related to
hemichordates) share the same cleavage system as hemichordates.

Kuunapuu et al. then conducted a series of biochemical studies of
ligand cleavage in this subfamily. They showed that cleavage site
sequence diversity leads to differences in the enzymatic mechanics
of cleavage. For example, H. sapiens BMP2 and BMP4 have two
Furin sites, whereas their homolog in D. melanogaster, Dpp, has
three. In both species, the Furin sites are cut sequentially to produce
the ligand. In H. sapiens, the site adjacent to the ligand is cleaved
first, but in D. melanogaster the site furthest from the ligand is cut
first.

Kuunapuu et al. concluded that the diversity of cleavage site
organization seen in different species results from compensatory
changes that occurred in response to mutations arising
independently in each lineage (Kuunapuu et al., 2009). As the TGFf3
ligand must be cleaved from the pro-domain to bind receptors,
compensatory changes that create new Furin sites ensure the
survival of the organism. We agree with this conclusion and would
like to suggest that the phylogenetic data also have implications for
understanding TGF[3 regulation. In our view, the existence of ‘gene
tree-species tree incongruity’ for cleavage sites implies that
regulatory functions associated with these sites are likely to be
implemented differently in each species.

Type | receptor sumoylation

The phosphorylation of R-Smads by TGFp type I receptors is
regulated by a variety of antagonistic mechanisms, including I-
Smads and ubiquitylation (e.g. Wicks et al., 2005; Yamaguchi et al.,
2006). In the case of TGFP type I receptor ubiquitylation, the
specific lysines targeted by E3 ubiquitin ligases are unknown. To aid
in the identification of lysines that become ubiquitylated in these
receptors, Konikoff et al. conducted a phylogenetic analysis of
lysine conservation in type I receptors using the three-species
strategy (Konikoff et al., 2008) (Fig. 4; see Table S2 in the
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Fig. 3. Enzymatic regulation of TGFf signaling. (A) TGFj proteins
are processed by two enzymatic cleavage events (black arrows). The
first removes the N-terminal signal peptide and the second separates
the pro-region from the C-terminal receptor-binding ligand. (B) Type |
receptors are activated by type Il receptor phosphorylation on serine in
the intracellular glycine-serine (GS) box (red arrow). The H. sapiens type
| receptor ALK5 is deactivated by sumoylation on lysine in the kinase
domain (blue arrow). The extracellular Cys box is shown for reference.
(€) Smad proteins are activated by phosphorylation on serine at their C-
terminus (single red arrow). X. laevis Smad1 is deactivated by tyrosine
phosphorylation by MAPK and by serine phosphorylation by GSK3 in
the linker region (red arrows). H. sapiens SMAD4 is regulated by
ubiquitylation and sumoylation of lysine in a tissue-specific manner
(blue arrows).

supplementary material). The authors identified five lysines that are
conserved in all type I receptors. However, they noted that in the
crystal structure of H. sapiens ALKS5 (a receptor for TGFB/Activin
subfamily ligands), only two lysines (which correspond to Lys326
and Lys490 in M. musculus ALKS) are exposed on the molecule’s
surface and could therefore be considered as candidates for
ubiquitylation.

The sumoylation of H. sapiens ALKS within its kinase domain
(Fig. 3) was recently shown to regulate the activity of this receptor
(Kang et al., 2008). Konikoff et al. reported that the sumoylated
lysine (Lys393 in M. musculus ALKS) is also present in three other
receptors: M. musculus ALK4 (ACVRIB — Mouse Genome
Informatics), D. melanogaster Thickveins (Tkv, a Dpp receptor) and
C. elegans SMA-6 (Fig. 4). This pattern of sequence conservation
and its presence in C. elegans, D. melanogaster and M. musculus
suggest that the sumoylation of this lysine is an ancient mechanism
for regulating TGFP type I receptor activity and that D.
melanogaster Tkv and C. elegans SMA-6 might also be regulated
by sumoylation.

Conservation of this sumoylated lysine is, however, inconsistent
with the evolutionary relationships between the full-length
receptors. M. musculus ALKS, which has the conserved lysine, is
more closely related to the D. melanogaster receptors Baboon
(Babo; an Activin receptor) and Saxophone (Sax; a receptor for both
Dpp and Gbb), neither of which has the conserved lysine, than it is
to D. melanogaster Tkv (Fig. 4). This pattern of sequence
conservation suggests that the sumoylated lysine was lost
independently three times: from Babo, from the M. musculus
ALK3/ALK6 (BMPR1A/BMPRI1B —Mouse Genome Informatics)
pair and from the cluster that contains Sax and M. musculus
ALK1/ALK2 (ACVRL1/ACVR1). From the analysis, Konikoff et
al. concluded that the phylogenetic analysis of lysine conservation,
when coupled with experimental data, can be fruitfully employed to
identify changes in pathway regulation by ubiquitylation or
sumoylation (Konikoff et al., 2008).

R-Smad linker phosphorylation

The Smad family of multifunctional proteins comprises four major
subfamilies: two subfamilies of R-Smads, one of Co-Smads and one
of I-Smads (Fig. 5). All human and fly Smad proteins cluster
together in these four subfamilies, and there are three subfamilies
composed solely of nematode family members. Like the
Dpp/BMP2/BMP4 ligands, H. sapiens and D. melanogaster Smads
in the same subfamily function similarly in transgenic experiments
(Marquez et al., 2001; Takaesu et al., 2005). The functions of Smad
proteins are effected via three highly conserved regions (Fig. 3).
There is an N-terminal MH1 domain that mediates transcription
factor interactions and DNA binding, a near C-terminal MH2
domain that modulates a wide variety of protein-protein interactions,
and a C-terminal receptor phosphorylation region that contains the
serine residues targeted by the type I receptor (Lin et al., 2008). As
noted above, when a C-terminal serine is phosphorylated, an R-
Smad translocates from the cytoplasm to the nucleus (Fig. 1).

The linker region between the conserved MH1 and MH2 domains
was initially thought to function largely as a spacer. This was owing
to an apparent lack of conserved amino acids in this region in R-
Smads from different phyla (e.g. C. elegans SMA-2 and SMA-3 and
D. melanogaster Mad) (Sekelsky et al., 1995). Subsequently, sets of
conserved extracellular signal-regulated kinase (ERK) serine-
threonine phosphorylation sites were identified in the linker domains
of mammalian R-Smads. These ERK sites are phosphorylated in
vivo (Kretzschmar et al., 1997), where they promote the recruitment
of Smurf ubiquitin ligases via a conserved PY motif also present in
the linker region (Chong et al., 2006; Sapkota et al., 2007). Genetic
analyses revealed that ERK phosphorylation of M. musculus
SMADI contributes to embryonic events, such as primordial germ
cell formation (Aubin et al., 2004).

In 2006, Newfeld and Wisotzkey extended the analysis of linker
conservation to D. melanogaster and C. elegans and reported that
one of the mammalian ERK sites is present in all Mad/Smad1
subfamily members (Fig. 3), but that none of the mammalian ERK
sites in the Smad2/Smad3 subfamily is conserved in D.
melanogaster or C. elegans (Newfeld and Wisotzkey, 2006). This
linker conservation study also revealed that two consensus sites for
phosphorylation by the glycogen synthase kinase 3 3 (GSK3p)
serine-threonine kinase are conserved in all members of the
Mad/Smad]1 subfamily and that these sites are not present in any
other family member (Fig. 3). Based on the subfamily-wide
conservation of a GSK3p site, the authors predicted that linker
phosphorylation by GSK3P represented a subfamily-specific
function. This prediction was experimentally validated by
Fuentealba et al., who demonstrated that the X. laevis Smad] linker
region was phosphorylated by GSK3B (Fuentealba et al., 2007).
They showed that GSK3[3 phosphorylation regulated TGFf signal
duration by stimulating the polyubiquitylation and degradation of
Smadl.

This was the first of three phylogenetic predictions for new
mechanisms of Smad regulation to be experimentally validated.
Subsequent studies employing the same strategy, the identification
of conserved amino acids that are associated with enzymatic activity,
shifted from phosphorylation targets (serine and threonine) to the
ubiquitylation and sumoylation target (lysine).

R-Smad and Co-Smad ubiquitylation and sumoylation

It is known that R-Smads in D. melanogaster and mammals are
negatively regulated by polyubiquitin-mediated degradation (e.g.
Kuratomi et al., 2005). Nevertheless, the identity of the lysines that
are targeted for ubiquitylation remains largely unknown. By
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Fig. 4. Conservation of a TGFf type | receptor sumoylation site. An alignment was generated from the longest isoform of each protein as
described by Konikoff et al. (Konikoff et al., 2008). The length of the alignment was 796 amino acids. (A) A star tree was generated in MEGA as
described (Newfeld et al., 1999). The tree is unrooted with branch lengths drawn to scale. Clusters of sequences with significant statistical support
are indicated: TGFp/Activin receptors (purple and blue); BMP receptors (green); DAF-1 (red) and SMA-6 (brown). H. sapiens ALK5 is sumoylated at
Lys393, which regulates its activity (Kang et al., 2008). Four receptors with a conserved lysine residue in the same context (I/L-X-X-K) as Lys393 in H.
sapiens ALKS are underlined. (B) Color-coded amino acid sequences from each receptor corresponding to the region of Lys393 in H. sapiens ALK5.
The conserved lysine is shown in black in ALK4, ALK5, Tkv and SMA-6, with its amino acid number to the right. For the name, synonym and protein

ID of each sequence, see Table S2 in the supplementary material.

contrast, the monoubiquitylation of the H. sapiens Co-Smad
(SMADA4) has a positive influence on its ability to activate gene
expression and the target of monoubiquitylation has been identified
(Lys507) (Morén et al., 2003). To aid in the process of identifying
ubiquitylated lysines in Smad family members, Konikoff et al.
conducted a phylogenetic analysis of lysine conservation in which
they incorporated information from Smad crystal structures (e.g. Shi
etal., 1998; Wu et al., 2001) to eliminate lysines that are conserved
for structural reasons (Konikoff et al., 2008). They found that every
Smad contains a single conserved lysine in the MH2 domain (Fig.
5; see Table S3 in the supplementary material) that is homologous
to H. sapiens SMAD4 Lys507. This finding led the authors to
predict that this universally conserved lysine is a strong candidate
for regulation by ubiquitylation in all Smads.

Konikoff et al. then analyzed lysine conservation within each
Smad subfamily. They found that all Co-Smads contain two
conserved lysines, including the universal Smad lysine in the MH2
domain (Fig. 5). The conservation of the context for Lys738 in D.
melanogaster Medea (homologous to H. sapiens SMAD4 Lys519)
is stronger than that of the universal Smad lysine (H. sapiens
SMAD4 Lys507), leading the authors to predict that Lys738 is also
targeted for ubiquitylation. Several months later, experiments
validating this prediction were published. Dupont et al.
demonstrated that Lys519 in H. sapiens SMADA4 is the target of
reversible monoubiquitylation by the E3 ligase Ectodermin/Tifly
and the deubiquitinase FAM (Dupont et al., 2009). Further, the
ubiquitylation state of Lys519 acted as an ‘on-off” switch for TGF3
signaling. As a result, we now predict that Co-Smads in all species
are subject to regulative monoubiquitylation at the homologous
lysine.

Additional analyses of the conserved lysines in Co-Smads
revealed that neither lies within a sumoylation consensus site
(Konikoff et al., 2008). However, Lys185 in D. melanogaster Medea
is within a consensus site (Yang et al., 2006), and is as conserved as

Lys159 in H. sapiens SMAD4, which is sumoylated (Long et al.,
2004). Lys113 in H. sapiens SMADA4 is also sumoylated (Long et
al., 2004), and is as conserved as Lys141 (also within a sumoylation
consensus site) in Medea. Given that both lysines, and their contexts,
are conserved between H. sapiens SMAD4 and D. melanogaster
Medea, Konikoff et al. predicted that both lysines are sumoylated in
Medea (Konikoff et al., 2008). In the same month, Miles et al.
demonstrated that Lys141 and Lys185 in Medea are sumoylated and
that sumoylation reduces Medea activity in embryonic dorsal/ventral
patterning (Miles et al., 2008), validating this prediction. Note that
the lysine numbering used in this review and in Konikoff et al.
derives from GenBank NP 524610 (Wisotzkey et al., 1998; Das et
al., 1998), whereas that employed by Miles et al., who report
sumoylation of Lys115 and Lys159, derives from GenBank
AF039232 (Hudson et al., 1998).

In summary, the frequent convergence of phylogenetic and
experimental data for TGF signaling suggests that the analysis of
lysine conservation in receptors and signal transducers from other
pathways will be similarly informative. A strength of the
phylogenetic approach for understanding signaling pathway
regulation is that it employs publicly available sequences and
computer programs. A weakness of this approach is that
distinguishing between structural conservation and regulative
conservation can be difficult. As such, we are currently developing
computational methods to address this issue.

Kinetic modeling of TGFj pathway regulation

Computational modeling presents information derived from a
biological system in mathematical form. Models often aim to identify
emergent properties of a system that are not detectable from
observations of the underlying interactions. Models typically depict
a network of molecular components (genes, proteins, metabolites)
and their functional interactions but they can also include features
such as phenotypes. Over the last decade, mathematical modeling has
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been successfully applied to a number of biological problems. For
example, models of signaling pathways have revealed unsuspected
features, such as negative feedback or bistability (e.g. Ferrell, 2002).
More complex models integrate multiple aspects of cellular biology.
For example, a model incorporating signaling, gene expression and
metabolism has demonstrated the contribution of these mechanisms
to the stress response of the yeast cell (Klipp et al., 2005).

Systems of ordinary differential equations (equations that describe
how a function changes in response to a single independent variable
over time) are frequently used to model dynamic processes in
biological networks. Models built on differential equations are known
as kinetic models (Klipp, 2007). The differential equations used in
kinetic models describe changes in the concentration of components
over time and express molecular events (e.g. phosphorylation)
according to empirical biochemical data. Kinetic equations were
originally established to represent classical enzymatic reactions (e.g.
oxidation-reduction) (Cope, 1963), but are now applied to describe
protein-protein or protein-DNA interactions in cellular settings [e.g.
transcription (Chen et al., 1999)]. The accuracy of the predictions that
arise from computational models of a given biological question can
vary according to the quality of the initial biochemical data, the
model’s topology and its assumptions. Therefore, the systematic
experimental assessment of predictions is required to validate a model.
A schematic of the steps necessary for kinetic model construction and
application are shown in Fig. 6.

Kinetic models of TGFP signaling offer the ability to conduct real-
time simulations of biochemical interactions as a means of
understanding pathway regulation. The difficulty in obtaining suitable,
fine-scale quantitative biochemical data on all aspects of the pathway
has led modelers to focus on selected parts of the pathway to test
specific hypotheses. For example, recent studies of the TGF[3 pathway
have analyzed receptor endocytosis and nuclear accumulation of
phosphorylated Smads, as we discuss in more detail below.

Receptor endocytosis

Although TGFp receptor activation occurs at the plasma membrane,
studies with labeled type II receptors have suggested that
downstream signaling through the SMADs requires receptor
internalization. For example, Di Guglielmo et al. studied the
trafficking of labeled TGF type II receptors into clathrin-coated
endosomes and into lipid-raft caveolae (Di Guglielmo et al., 2003).
The authors associated receptor internalization by clathrin-coated
endosomes with the activation of SMAD2 and receptor recycling,
whereas internalization into lipid-raft caveolae was associated with
receptor degradation. Alternatively, Mitchell et al., who also studied
TGFB type II receptors, demonstrated that internalization of
receptors in clathrin-coated endosomes led to receptor recycling and
eventually to receptor degradation, but concluded that lipid-raft
caveolae have no significant role in TGFf signaling (Mitchell et al.,
2004). A third view of the role of receptor internalization was
recently reported by Zuo and Chen, who noted that TGFJ type I
receptors localized in lipid-raft caveolae do not activate Smads but
instead activate the MAPK pathway (Zuo and Chen, 2009).

To advance our understanding of the relationship between type I
and type Il receptor activity and their subcellular location, Vilar et al.
generated a kinetic model of receptor trafficking (Vilar et al., 2006).
Their model included the following components: ligands, both types
of receptor and two receptor locations — at the cell surface in the
plasma membrane or internalized within endosomes. The model was
initiated with biochemical and cell biological data from Di Guglielmo
et al. (Di Guglielmo et al., 2003) and Mitchell et al. (Mitchell et al.,
2004). Model simulations suggested that receptor location influenced
a number of features of receptor activity, such as type I-type II
complex formation, ligand binding and receptor degradation.

Subsequently, Zi and Klipp generated an expanded kinetic model
that included both the role of receptor compartmentalization and
Smad activity (Zi and Klipp, 2007). Model parameters included:
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Fig. 6. Constructing a kinetic model of a biological system. The
steps required to create a kinetic model of a biological system based on
published experimental data. Modeling a signaling pathway requires
both qualitative and quantitative data. Molecular and biochemical
knowledge of protein-protein interactions shape the overall topology of
the model. Details of protein amounts, transport and subcellular
localization, phosphorylation states, kinetics of synthesis and
degradation and gene expression levels provide the parameters and
parameter values that constrain the model to biological reality. The
relationships between the model components are then defined
mathematically in the form of ordinary differential equations.
Quantitative parameter values are implemented in the model and
missing parameter values (e.g. an experiment that has yet to be done)
are computationally estimated to fit the quantitative dataset. The
model gains in explanatory power with the number of datasets
incorporated. Once the model is set, simulations using modified forms
of the model can predict what the crucial components are and rule out
regulatory roles for other components. Next, experimental testing of
new hypotheses for biochemical mechanisms that underlie model
predictions validate or invalidate the model, potentially providing new
insights into the pathway. Then the model begins a new cycle.
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ligand-receptor binding, receptor endocytosis by clathrin-coated
endosomes and by lipid-raft caveolae, receptor recycling and
degradation, Smad nuclear import and export, and R-Smad—Co-
Smad complex formation. The model was initiated with
biochemical and cell biological data from Di Guglielmo et al. (Di
Guglielmo et al., 2003). Model simulation over a range of
conditions for each parameter suggested that TGF[3 signaling via
Smads is modulated by a balance between receptor endocytosis into
clathrin-dependent endosomes versus lipid-raft caveolae (Fig. 7A,
top). Thus, the model suggests an explanation for the variation in
the kinetics of receptor activity observed by Di Guglielmo et al. and
Mitchell et al. in that each cell type utilizes a distinct ratio of the
available endocytic pathways. Looking ahead, it will be interesting
to see whether the endocytosis balance hypothesis holds when the
model is expanded with additional parameters, such as Smad
activation in the absence of receptor internalization (e.g. Lu et al.,
2002).

Smad nuclear accumulation

A key step in transducing the TGFp signal is Smad nuclear
accumulation. Several mechanisms have been proposed to
regulate this step in TGF signaling, including regulative

monoubiquitylation (Dupont et al., 2009), orchestrated nucleo-
cytoplasmic shuttling via the TAZ transcription factor (Varelas et al.,
2008), nucleo-cytoplasmic shuttling kinetics [in which different
forms of the Smads have different kinetics of nuclear import and
export, such that the phosphorylated Smads accumulate in the
nucleus (Inman et al., 2002)] and retention factors [proteins in the
cytoplasm that have a higher affinity for unphosphorylated Smads
versus proteins in the nucleus that have a higher affinity for
phosphorylated Smads (Xu et al., 2002)].

To distinguish between the shuttling kinetics and retention
factor mechanisms, Clarke et al. developed a phosphorylation
model of canonical Smad signaling that incorporated R-Smad
phosphorylation, R-Smad heterodimerization with Smad4 and the
nuclear accumulation of R-Smad—Smad4 complexes (Clarke et al.,
2006). The authors also considered the absence of export of
activated Smad complexes from the nucleus, as suggested by
Schmierer and Hill (Schmierer and Hill, 2005). The model relied
on data from both the literature and their own experimental
measurements. By systematically altering model features and
statistically analyzing sets of parameter values, the simulation
showed that perturbing the rate constants for R-Smad
phosphorylation, R-Smad dephosphorylation and R-Smad—Smad4
complex dissociation in the nucleus led to the largest changes in
Smad nuclear accumulation. This simple model reproduced the
major features of Smad signaling and demonstrated that the
imbalance  between = R-Smad  phosphorylation  and
dephosphorylation rates is likely to be a significant mechanism in
governing Smad nuclear accumulation during TGFP signaling. In
addition to supporting the shuttling model, the results from
repeated simulations falsified the retention hypothesis as no
nuclear Smad-binding proteins were needed to recreate the
experimental data.
Their findings led the authors to generate the new hypothesis
that Smad oligomerization protects phospho-R-Smads from
dephosphorylation, thereby promoting Smad nuclear
accumulation.

Schmierer et al. then generated a model of Smad nucleo-
cytoplasmic shuttling that incorporated a much larger base of
biochemical data (Schmierer et al., 2008) (Fig. 7B). Simulations
generated by this model were entirely consistent with the results of
the Smad phosphorylation model of Clarke et al. (Clarke et al.,
2006). The new study agreed that the imbalance between R-Smad
phosphorylation and dephosphorylation rates is a fundamental
contributing factor to Smad nuclear accumulation and that Smad
oligomerization protects phosphorylated Smad from a phosphatase
in the nucleus. A new insight gained from the broader scope of this
model is that the inhibition of nuclear export of activated Smad is
not itself sufficient to fit the experimental data. For the model to
match the observations, the inhibition of export of activated Smad
must be accompanied by the faster import of activated versus
monomeric Smads into the nucleus.

In summary, the strengths of kinetic modeling are its ability to
incorporate the ‘real-time’ dynamics of biochemical processes
within a biological system and its ability to simulate the effects of
parameter changes ‘in silico’. Then, comparisons of simulations
with biochemical data allow the investigators to identify parameters
or parameter values that ‘break’ the model. Hypotheses regarding
the biochemical mechanisms underlying the incongruity can then be
tested experimentally. One weakness of this approach is that large
quantities of detailed biochemical data are required to establish the
initial conditions and rates of change for each component. A second
weakness is that models cannot predict activities for which there are
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no pre-existing data. For example, models of Smad activity equate
dephosphorylation with inactivation, but we now know that
inactivation of Smads is also achieved by monoubiquitylation. New
models that incorporate Smad ubiquitylation are currently being
developed.

Conclusions

One of the most satisfying moments in science occurs when two
independent lines of research arrive at the same conclusion. The
convergence of phylogenetic and molecular studies in identifying
new regulatory features of TGFP signaling is a prime example.
There is nothing that prevents other developmental pathways from
enjoying similar synergies. An analysis of the Wnt pathway showed

that all Frizzled receptors have a single conserved lysine and that
Dishevelled signal transducers share six conserved lysines (Konikof
et al., 2008). The authors predict that ubiquitylation and
sumoylation are as important in regulating the Wnt pathway as they
are in the TGFP pathway. In addition, we have identified a
previously unrecognized and conserved lysine in Cubitus
interruptus (a Hedgehog pathway signal transducer in D.
melanogaster) that might influence its regulation.

The dexterity with which we apply phylogenetics to additional
pathways is based upon two principles. First, that all the protein
sequence data are publicly available. Second, that the necessary
user-friendly computer programs are also freely available (Boxes 2
and 3). Thus, the extension of the analysis of lysine conservation to
receptors and signal transducers in other pathways is
straightforward. From a broader perspective, the concept of
exploiting amino acid conservation to understanding pathway
regulation can be applied to any post-translational modification that
targets a specific amino acid.

The same philosophy applies to kinetic modeling as this approach
can be employed to analyze any pathway for which quantitative
biochemical data are available. The amount of published biochemical
data for any particular pathway is likely to be sufficient, but a greater
understanding of mathematics is required to generate the appropriate
equations for kinetic modeling as compared with the mathematical
skills required to utilize phylogenetic computer programs. To
productively employ kinetic modeling in studies of signal
transduction, we suggest that developmental biologists collaborate
with computer scientists. Such collaborations have been successful
in characterizing embryonic morphogen gradients in D.
melanogaster, as noted in the accompanying review (Umulis et al.,
2009).

Looking beyond the fine-scale methods of phylogenetics and
kinetic modeling, two studies of TGF signaling utilizing network-
scale modeling are in progress. First, a strategy for applying
Boolean logic to signaling pathways has been developed (Mendoza
and Xenarios, 2006). In this method, quantitative parameters are
ignored and the focus is solely on the topology of the pathway (e.g.
the direction of information transfer and the factors that affect this
process). The authors are currently analyzing the tumor necrosis
factor oo and TGFP interaction network in dendritic cells. Second,
a strategy for signaling network reconstruction from microarray
data has been developed (Adler et al., 2009). In this method, a
matrix is constructed of genes, the expression of which correlates
with a particular experimental regime. Matrices derived from
different experiments employing variations to the same regime are
then compared statistically to reveal robust correlations that are
visible across multiple experiments. The authors are currently
analyzing TGFP signaling utilizing publicly available microarray
data from ArrayExpress (www.ebi.ac.uk/microarray-as/ae). Their
initial results suggest 108 new candidates for inclusion in the
pathway.

In summary, we have reviewed the successful application of both
fine-scale and network-scale informatics approaches to
developmental signaling pathways, utilizing TGF[ as our model. In
our view, these efforts suggest that the application of informatics to
improve our understanding of developmental signaling pathways is
limited only by the investigator’s imagination.
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